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PantaRay: Fast Ray-traced Occlusion Caching of Massive Scenes
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Figure 1: The geometric complexity of scenes rendered in the movie Avatar often exceeds a billion polygons and varies widely: distant
rocks and vegetation are tessellated to a level of meters and centimeters, while the faces of even distant characters are modeled to over
40,000 polygons from forehead to chin. The spatial resolution of occlusion caches precomputed by our system also spans several orders
of magnitude.

Abstract

We describe the architecture of a novel system for precomputing
sparse directional occlusion caches. These caches are used for ac-
celerating a fast cinematic lighting pipeline that works in the spher-
ical harmonics domain. The system was used as a primary light-
ing technology in the movie Avatar, and is able to efficiently han-
dle massive scenes of unprecedented complexity through the use of
a flexible, stream-based geometry processing architecture, a novel
out-of-core algorithm for creating efficient ray tracing acceleration
structures, and a novel out-of-core GPU ray tracing algorithm for
the computation of directional occlusion and spherical integrals at
arbitrary points.
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1 Introduction

The movie Avatar featured unprecedented geometric complexity
(Figure 1), with production shots containing anywhere from ten
million to over one billion polygons.

To make the rendering of such complex scenes manageable while
satisfying the need to provide fast lighting iterations for lighting
artists and the director, modern relighting methods based on spheri-
cal harmonics (SH) [Ramamoorthi and Hanrahan 2001] and image-
based lighting [Debevec 1998] were used. These methods can
speed up the lighting iterations significantly, but unfortunately re-
quire an extremely compute and resource intensive precomputation
of directional occlusion information. Directional occlusion encodes
the visibility term used for lighting modulation as a function of di-
rection, and is typically computed using ray tracing.

We describe PantaRay1, a system designed to make this precompu-
tation practical by leveraging the development of modern ray trac-
ing algorithms for massively parallel GPU architectures [Aila and
Laine 2009] and combining them with new out-of-core and level of
detail rendering techniques.

The PantaRay engine is an out-of-core, massively parallel ray tracer
designed to handle scenes that are roughly an order of magni-
tude bigger than available system memory, and that require baking
spherical harmonics-encoded directional occlusion (SH occlusion)
and indirect lighting information for billions of points with highly
varying spatial density.

Our key contributions are the introduction of a flexible, stream-
based geometry processing architecture, a novel out-of-core algo-
rithm for constructing efficient ray tracing acceleration structures,
and a novel out-of-core GPU ray tracing algorithm for the compu-
tation of directional occlusion and spherical integrals. These are

1A twist on the Greek aphorism panta rei, i.e. everything flows

ACM Transactions on Graphics, Vol. 29, No. 4, Article 37, Publication date: July 2010.



beauty image

PRMan

 

tessellation
PRMan

 

final render

PantaRay

 

vislocal

micropolygons other cachesvislocal

 

cache
scene geometry

PRMan

 

other caching

Figure 2: A visual representation of the rendering pipeline used for the movie Avatar showing the various passes, the data flow among
them, and the role played by our system.

combined into a new precomputation system designed to efficiently
handle very high levels of geometric complexity.

Our system has been integrated into the production pipeline of Weta
Digital and is showcased in the movie Avatar, but the algorithmic
contributions and design decisions discussed in this paper could be
usefully applied in other domains, such as large-scale scientific vi-
sualization, which would benefit from rich lighting of extremely
complex geometric datasets.

2 Related Work

Much research has addressed the topic of massive model rendering
and visualization. Here we compare our system to some of the most
relevant work.

There is a vast amount of literature on the topic of direct visual-
ization of massive triangle meshes. Most such methods, includ-
ing [Borgeat et al. 2005] and [Cignoni et al. 2004], subdivide the
models into cells or patches and create multiple or progressive LOD
representations of those elements through mesh simplification. As
the goal of our system is not direct visualization but rather the com-
putation of low-frequency directional occlusion information, these
accurate simplification methods are not needed and we resort to
much cruder representations. Moreover, as we target ray tracing,
our out-of-core spatial index construction had the additional re-
quirement of targeting high ray tracing efficiency, employing parti-
tioning and subdivision methods based on the surface area heuristic
(SAH) [Havran 2000].

Wald et al. [2005] and Yoon et al. [2006] introduced two sys-
tems based on level of detail (LOD) for ray tracing large triangle
meshes. Unlike our approach, their systems relied on OS-level
memory mapping functionality and targeted moderately parallel
systems such as commodity multi-CPU systems, performing LOD
selection in each thread independently. This strategy would not be
portable to modern massively parallel GPU architectures. More-
over, no special effort was taken to speed up the out-of-core con-
struction of the acceleration structure, which in the case of [Wald
et al. 2005] took up to a day for a model containing 350M triangles.

Crassin et al. [2009] and Gobbetti et al. [2008] introduced two sys-
tems to render large volumetric datasets. These systems perform
direct visualization of geometry represented as voxel grids, rather
than computing complex visibility queries. Like our system, both
approaches decompose computation into a CPU-based LOD selec-
tion phase and a GPU-based rendering phase. Their systems per-
form these steps to visualize the entire model from a single point of
view at each frame, while we do it to compute directional occlusion
from large batches of nearby points at the same time.

Christensen et al. [2003] presented a ray tracing system using ray
differentials to perform LOD selection for high order surfaces. The
described system is able to efficiently handle very large tessellations
of the base meshes, but does not provide a level of detail scheme to
handle base meshes which do not fit in main memory. This was

essential for our approach, which needed to handle base meshes
with hundreds of millions or billions of control polygons.

Budge et al. [2009] presented an out-of-core data management layer
for path tracing on heteregeneous architectures. The system builds
on a dataflow network of kernel queues and a rendering-agnostic
task scheduler that prioritizes the execution of kernels based on data
availability, queue size and other criteria. The path tracer exploits
this generic framework by using a two-level acceleration structure,
where each second level out-of-core hierarchy is bound to a distinct
processing queue, extending the work of [Pharr et al. 1997]. The
resulting algorithm shows good scalability and thus satisfies one of
our main requirements. Unlike their work, we focus on developing
highly efficient special-purpose algorithms for the computation of
directional occlusion, minimizing I/O through careful LOD selec-
tion, and on the problem of efficient construction of high quality
out-of-core acceleration structures.

Ragan-Kelley et al. [2007] introduced Lightspeed as an interac-
tive lighting preview system that can greatly accelerate relighting
with local light sources and shadow maps in the presence of pro-
grammable shaders. Unlike their work, we focus on the efficient
computation of complex visibility for fast image based lighting in
massive scenes.

3 System Overview

Lighting of the movie Avatar was performed with a spherical har-
monics lighting pipeline based on the work of Ramamoorthi and
Hanrahan [2001], in which light transport is decomposed into a
multiple product integral:

Lo(x,ωo) =
�

Ω+
Li(x,ω)ρ(x,ω,ωo)V (x,ω)�ω, n̂�dω (1)

where Lo is the exitant radiance, x is the point of interest, ωo is the
outgoing direction, Ω+ is the hemisphere above x, Li is incident ra-
diance, ω is the incident direction, ρ is the BRDF, V is the visibility
function, n̂ is the normalized surface normal and �·, ·� indicates the
scalar product operator.

In this framework, directional visibility is precomputed at sparse
locations in the scene and stored in a spherical harmonics basis.
Building on the work of Kautz et al. [2002], Ng et al. [2004], and
Snyder [2006], this directional visibility can then be reused over
many lighting cycles by performing a simple dot-product with the
less expensive terms of the equation, which are computed at render
time. Our system was built to efficiently perform this precomputa-
tion on massive scenes of unprecedented complexity.

The overall pipeline is divided into several computation passes
as depicted in Figure 2. During preparation, the scene geometry
is tessellated and divided into microgrids according to a camera-
based metric, using a custom point cloud output driver in Photo-
Realistic RenderMan (PRMan). We store these microgrids on disk
in a stream representation which allows vertices to be associated
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Figure 3: Zooming into scene 6 shows the various levels of tessellation.

with arbitrary user data, much like the primitive variable mecha-
nism in PRMan [Upstill 1990] or the vertex attribute machinery in
OpenGL [Segal and Akeley 1999]. In order to include occluding
geometries not directly visible to the camera, assets outside of the
viewing frustum are also tessellated, either using a relatively large
overscan or according to a world-based metric. Figure 3 shows an
example of the various tesselation densities encountered in a typical
production scene.

The vislocal pass invokes our PantaRay engine to augment the mi-
crogrid stream with directional occlusion data encoded in the spher-
ical harmonics basis and other precomputed quantities such as area
light visibility, blurred reflections and occasionally one-bounce in-
direct lighting. All these properties are generated by programmable
shaders using the ray tracing capabilities of our engine.

In the end the result of the PantaRay precomputation is used in
PRMan to render the final images in what is called the beauty pass.
In this pass, the lighting, BRDF and visibility fields are composed
at render time at a very low cost, to the point where the lighting
iterations can happen inside the beauty pipeline at final quality.

While the vislocal datasets can be reused for many lighting itera-
tions, which greatly offsets their computation cost, computing vis-
local remains an extremely resource-intensive process, and is a nat-
ural point to start looking for optimizations.

To illustrate the targeted complexity, the movie Avatar required
baking scenes with tens of thousands of different plants modeled as
subdivision surfaces at a resolution of 100K to 1M control polygons
each, and hundreds of characters modeled at a resolution of 1-2M
control polygons. Since occlusion is a global effect, out-of-camera
objects must be kept during the computation. Similarly, translu-
cence and subsurface scattering require processing geometry that is
not directly visible from the camera. Rather than tracing full reso-
lution models, lower resolution proxies could have been developed
and used for far away assets. While our pipeline used stochastic
simplification to reduce the complexity of vegetation before ras-
terization [Cook et al. 2007], we did not explore the possibility of
performing any additional simplification to the ray tracing assets
before they entered our system: we chose instead to construct a
fully automated system capable of directly handling the raw model
complexity rather than create a semi-automatic pipeline for proxy
generation.

The highly variable spatial resolution of the PantaRay output pre-
sented another challenge: many shots in these scenes required a
spatially varying baking resolution ranging from a few points per
meter on distant geometry such as terrains, to several points per
millimeter, for example to accurately represent the lighting on and
under the characters’ fingernails.

The speed and memory limitations of existing general purpose ray
tracing technology, and the reduced flexibility and programmability
in other special purpose baking tools, such as ptfilter [Christensen
2008], did not scale to these production needs. In practice, our goal
was to raise the tractability limit of shots in the movie Avatar by
roughly 2 orders of magnitude in terms of both speed and scene
size while keeping a reasonable degree of programmability.

4 Architecture

Handling the necessary complexity inside a flexible ray tracing sys-
tem requires efficient out-of-core and streaming techniques. To
support the use of such methods throughout the entire software
pipeline, we designed the system around the concept of microgrid
streams, which are opaque sources of microgrids (that is microp-
olygon grids as in [Cook et al. 1987]). Microgrid streams can be
read into main memory and eventually rewound, or restarted from
the beginning. Such streams can represent either geometry stored
on disk or procedural geometry. Each microgrid is essentially a
small indexed mesh with up to 256 vertices forming micropolygons,
where each micropolygon can have one, two, three or four vertices
(to represent points, lines, triangles and quads). Vertices are repre-
sented by their position, a normal, a radius and any attached user
data. We decided to disallow any form of random access for two
reasons: first, geometry files are typically compressed to save disk
space and potentially achieve higher I/O bandwidth; second, input
streams could be procedurally generated, and the procedural gener-
ation function might not allow for individual primitive generation
(as for example in some L-systems).

The input to PantaRay is an XML scene description, containing
a list of shaders, a list of geometries and their associated binding
relationships.

A geometry is a microgrid stream, which can specify both an oc-
cluder and a collection of bake sets. A bake set represents the
central PantaRay unit of work, and specifies that the input stream
should be cloned to a corresponding output stream and further dec-
orated with a given list of shader output attributes. Geometries can
further be instanced through a user-defined transformation, poten-
tially specifying a procedural displacement shader.

Shaders are programmable units responsible for computing some
required information at the vertices of each microgrid in a bake set.

The first task that PantaRay performs after parsing the scene file is
building an out of core acceleration structure (AS) for the input oc-
cluder geometry. After the AS is built, PantaRay processes the bake
sets and begins shader execution. The following sections describe
these processes in detail.

4.1 Acceleration Structure Generation

The main bottleneck in building an out-of-core acceleration struc-
ture can easily be I/O speed, as typical bounding volume hierar-
chies (BVH) or k-d tree building strategies require touching all the
objects multiple times. Even taking into account the performance
of state-of-the-art storage technologies, the system had to assume
that tens of thousand of concurrent processes would be using the
same storage, requiring all non-local I/O to be modeled as a high
latency, high bandwidth device.

Hence we developed a general purpose stream-based builder which
tried to minimize the number of times the stream is rewound.

The first component of this builder is a streaming bucketing pass
designed to handle hundreds of millions of microgrids. The buck-
eter uses a simple binning approach: it constructs a regular 3d grid
by first streaming the geometry once to count how many microgrids
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Figure 4: Out-of-core spatial index construction. Microgrids stream from disk into a regular grid of buckets (a). Buckets are coalesced
and split into chunks (b) of up to 64KB. A BVH inside and among chunks (c) is broken into bricks (d) of up to 256 nodes. Each brick is
contiguous on disk.

fall in each bucket, and then streaming it a second time to populate
those buckets on local disk.

The first streaming pass reserves the correct amount of disk space
for each bucket and creates an index, but also keeps statistics about
the number of microgrids, micropolygons, vertices and byte size for
each of them.

The second pass of the algorithm loops through each microgrid to
find out all the buckets in which the microgrid falls, and records the
microgrid-bucket pairs into an in-memory cache with a few million
entries. Once the cache is full, the pairs are sorted by bucket index
and written to disk in their corresponding slot, essentially making a
single seek per bucket or less per cache flush.

The purpose of this bucketing pass is to create manageable units
of work which could fit in memory. However, the resulting uniform
grid is very coarse and often imbalanced, which makes it unsuitable
for direct ray tracing. With extremely large scenes it frequently hap-
pens that a large portion of the buckets are empty or very sparsely
populated, while a few remain too densely populated.

For these reasons, after the bucketing is done, we perform a chunk-
ing pass, whose purpose is to build a second disk-based spatial in-
dex with more uniform distribution of geometry, aggregating low-
complexity buckets and splitting high-complexity ones untill all oc-
cupy roughly 64KB of memory. We consider an implicit k-d tree
over the uniform grid of buckets. First, we perform a bottom-up
propagation of statistics from the leaves to the parents, so that for
each node it is possible to compute a rough estimate of the aggre-
gate size (as some of the buckets in a subtree might contain dupli-
cate references to the same microgrids, which will eventually be
merged, it is excessively expensive to obtain exact values).

Next, we traverse the tree top-down and emit a new aggregate clus-
ter of buckets (called a chunk) as soon as a node with suitable statis-
tics is found. When we encounter a leaf which is too big, we split
it further. This splitting operation is done either in memory using
a classical BVH builder based on the SAH, or using the previously
described bucketing algorithm if the leaf contains more data than
a user-selected working-set size (typically corresponding to a few
million microgrids). At this point geometry is split into chunks that
fit in main memory, but the geometry within each chunk is unorga-
nized. When we emit a new chunk, we build a SAH-based BVH on
all its micropolygons. Finally, all the chunk hierarchies thus gener-
ated are organized together into a single top-level SAH-based BVH
constructed in memory (it is sufficient to keep a bounding box and
an index per chunk hierarchy).

As the trees are generated, they are further split into smaller treelets
containing up to 256 nodes and 256 vertices each, called bricks,
which are stored on disk as a contiguous segment of data. In such
treelets, each node is either an internal node, containing a single
pointer to the first of two consecutive children within the brick, or

a leaf. Leaves can either point to the root of another brick, or refer-
ence a list of primitives. This process is illustrated in Figure 4.

As each brick contains less than 256 micropolygon references, all
face and vertex indices are stored using an 8 bit representation,
making topology information extremely compact. Vertex attributes
from the leaf geometry are propagated up to each node in the
treelets doing simple averaging, as they are later used for LOD. The
only attribute which receives special treatment is opacity, which is
multiplied at each level by a very crude estimate of the average oc-
clusion caused by the entire subtree below the node to random rays
hitting its bounding box:

occlusion(subtree)≈ min
�

1,
∑i area(micropolygoni)

area(bbox(subtree))

�

While in pathological cases the error of this estimate can be arbi-
trarily high, in practice it proved well suited for the kind of incoher-
ent geometry found in the vegetation of Avatar’s jungle. If needed,
the precision of this approximation could be improved employing
a technique similar to the ones described by Christensen [2008] or
by Lacewell et al. [2008].

4.2 Shader Execution

Shaders are executed for each point defined in a bake set. As an
optimization, a chain of filters can be applied to these point streams
before the shaders actually process them. For example, we have
implemented filters to perform the usual tasks of occlusion culling,
backface culling and frustum culling, as well as camera-based and
feature-based stream decimation.

After the filters are run, the point streams are broken up into a list
of spatially organized batches (containing a number of points cor-
responding to up to 1M rays) built by a fast median-split k-d tree
construction algorithm. The resulting batches generated by the k-d
splits are reordered along a Hilbert curve passing through their cen-
troids to maximize spatial coherence for the following processing
passes.

The shading engine provides two basic building blocks to the
shaders: a general purpose ray tracer (used for example by an area
light shadows shader) and a custom, massively parallel ray tracer
designed to perform spherical sampling queries (used by SH occlu-
sion and one bounce indirect lighting shaders).

The decision to build a custom ray tracer for the latter was made to
allow the application of smart, domain-specific LOD and streaming
techniques to our most computationally intensive shaders. The next
sections describe the two tracers in detail.
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Figure 5: LOD selection. (a) Sample rays emanate from a sur-
face point. Bricks whose bounding volumes are smaller than
the average distance between sample rays are unloaded from
memory (dashed lines); the rest are loaded. (b) The result is
a cut through the BVH which is detailed near the ray origins, but
coarse farther away.

load bricks (batch bbox,brick,σ)
1 load brick
2
3 foreach node in brick’s treelet
4 if node is a leaf pointing to another brick
5 child brick = node.brick()
6 child bbox = node.bbox()
7 // check if child brick’s projection
8 // subtends an angle larger than σ
9 sq diag = square diagonal( child bbox )

10 sq dist = square distance( child bbox, batch bbox )
11 if sq diag > σ2 * sq dist
12 load bricks( batch bbox, child brick, σ )
13 else
14 mark child brick and its descendents as unloaded

Figure 6: Pseudocode for the brick LOD selection procedure.

4.3 Ray Tracing for Arbitrary Queries

The general-purpose ray tracer is currently used by simple reflec-
tion occlusion and area light shaders only. Both of these shaders
need to cast just a few rays per point and typically require only a
fraction of the runtime of the SH occlusion and one-bounce indirect
lighting shaders.

Currently this ray tracer is implemented on the CPU using a stan-
dard multi-threaded stack-based BVH traversal kernel, where each
thread processes separate rays. In order to amortize the I/O costs in-
volved in traversing the disk-based acceleration structure, we keep
the traversed bricks in a large shared LRU cache. Furthermore, to
avoid excessive locking, each thread keeps a smaller local cache
of the most recently used 32 bricks. We found that this approach
scales quite well up to 8 CPU threads, giving a sustained CPU usage
of about 95%.

4.4 Ray Tracing for Spherical Sampling

For each point, the SH occlusion and irradiance gathering shaders
need to cast a set of rays (typically 512 or 1024) uniformly or
cosine-distributed over a hemisphere or full sphere, and respec-
tively project the resulting occlusion values into the spherical har-
monics basis or integrate the incident radiance.

Running such shaders is extremely compute-intensive, as many
scenes require baking up to billions of points; hence we decided
to make use of the massive parallelism available in modern GPUs
to accelerate the process.

trace()
1 while any active ray
2 if any active ray is in leaf node
3 perform wide leaf intersection() // Figure 8
4 pop traversal stack
5
6 for i = 0 ... 8 // short while loop
7 if node is a new brick
8 if new brick is not loaded
9 report intersection with new brick’s bbox

10 pop traversal stack
11 else
12 jump to new brick’s root
13 else if node is not leaf
14 traverse to next node
15 else
16 break // node is a leaf

Figure 7: Pseudocode for the SIMT tracing kernel. Each thread
processes a separate ray.

However, it was clear from the beginning that the ray tracing ap-
proach described in the previous section would not scale to thou-
sands of threads due to the intrinsic locking and resource contention
involved in keeping and updating a global LRU cache indepen-
dently for each ray.

To solve the problem efficiently we designed a LOD-based algo-
rithm which first determines and streams in all the required bricks
for all rays generated by all points in a batch (Figure 5), and then
proceeds to trace all rays through the resulting cut of the brick hier-
archy with a single traversal kernel implemented in CUDA. Bricks
which deemed unnecessary by the LOD selection scheme are ap-
proximated during traversal as partially transparent bounding boxes
(Section 4.1). The rationale behind this approach is that while the
whole scene doesn’t fit in main memory and while it is often im-
possible to build a single low-resolution representation of the entire
scene valid for all points at once, the amount of geometry needed to
capture detailed occlusion in a confined region of space is usually
small. Hence, we create a custom far-field representation for each
batch.

The LOD selection scheme is based on a crude estimate of ray dif-
ferentials coupled with an argument inspired by the Shannon sam-
pling theorem: the initial assumption is that each ray represents, on
average, a solid angle of σ = 2π/n steradians (or σ = 4π/n in the
fully spherical case), where n is the number of samples taken per
point. Furthermore, we assume that the sampling frequency is suf-
ficient to sample the underlying signal implied by the scene geome-
try, so that for each point it suffices to represent the scene geometry
up to a projected angular resolution of σ steradians. While these
assumptions do not strictly hold in a mathematical sense, in prac-
tice this does not cause visually disturbing artifacts, as the result is
roughly equivalent to smoothing the sampled signal by means of a
box filter in the ray direction domain.

In order to determine all the bricks needed for all the points in a
given batch, we run the algorithm in Figure 6. The bricks are loaded
in the host memory in a contiguous memory arena managed by a
single-threaded LRU cache.

To minimize memory fragmentation, we wrote a special purpose
allocator that performs incremental coalescing by removing small
unused memory fragments from in between successive bricks. An
index array keeps track of which bricks are loaded and where. Af-
ter loading is completed, the parts of the arena which changed in
the last loading session are mirrored to the GPUs present in the sys-
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wide leaf intersection()
1 tidx = threadIdx.x; // [0,32)
2 // count the number of ray-primitive tasks.
3 // haveLeaf indicates if the current node is a leaf
4 [lo,hi) = scan(haveLeaf ? numPrims : 0);
5 numIsect = hi from thread 31 // how many left?
6
7 while (numIsect > 0)
8 {
9 // select up to 32 ray-primitive tasks

10 foreach primitive p, with lo+p ∈ [0,32)
11 write (tidx,p) pair to shared[lo+p]
12
13 // get a ray-primitive task to execute
14 (srcThread,p2) = shared[tidx];
15
16 // copy needed variables from ”srcThread” thread
17 foreach 32bit variable var needed in intersection
18 shared[tidx] = var; // write my own variable
19 var2 = shared[srcThread]; // read from ”srcThread”
20
21 // intersection using vars copied from ”srcThread”
22 if (tidx < numIsect)
23 shared[tidx] = intersectRayPrim(p2);
24
25 // collect intersections of my ray
26 foreach prim p, with lo+p ∈ [0,32)
27 modify ray according to shared[lo+p]
28
29 lo = lo-32; hi = hi-32; numIsect = numIsect-32;
30 }

Figure 8: Pseudocode for warp-wide primitive intersection.
This implementation assumes 32-wide SIMD/SIMT so that 32
threads execute all statements in lock-step. All threads in the ex-
ecuting warp must be active when entering the function. shared
is a shared memory array, accessible to all threads.

tem. We pay special care to minimize the number of host-to-GPU
transfers by aggregating as many potentially non-contiguous dirty
blocks of the memory arena as possible in each transfer, as long as
the total number of bytes in the transfer exceeds the original size of
the merged blocks by less than 20%.

Finally, we invoke a shading kernel on each GPU to generate and
trace all the rays spawned by a subset of the points in the processed
batch. We use the simplest possible load-balancing algorithm by
letting each GPU process 1/mth of the points, where m is the num-
ber of available GPUs. We build the subsets assigned to each GPU
using another recursive median split pass, in order to maximize co-
herence.

The tracing algorithm (Figure 7, on the previous page) follows
the lines of the while-while traversal kernel described by Aila and
Laine [2009], adapted to handle the treelet organization of the un-
derlying BVH. One notable difference is the way in which leaf
nodes are processed. Due to the very high scene complexity and
correspondingly high tree depth, we observed very low Single In-
struction Multiple Thread (SIMT) utilization in primitive intersec-
tion, often close to 25%. Hence, we decided to implement a warp-
wide intersection algorithm (Figure 8) which first counts the num-
ber of primitives in the leaf nodes currently being proccessed by
the active rays in a warp and then distributes the ray-primitive pairs
to all threads in the warp, finally performing a reduction to deter-
mine the closest intersection per ray. The resulting algorithm raised
SIMT utilization to 50-60%.

5 Design Decisions

In this section we expand on some of the design decisions made and
alternatives explored.

Acceleration structure construction. We chose to focus almost
all efforts on I/O minimization, rather than on algorithm paral-
lelization. In fact, while many parts of our algorithm lend them-
selves naturally to parallelization (as for example its deep bucket-
ing passes), we believe that their heavy usage of intrinsically serial
I/O resources would have dampened most of the potential gains for
the kind of scenes we were interested in.

LOD-based ray tracing. We explored several approaches be-
fore settling on a single multi-resolution hierarchy of bricks repre-
sentable at different levels of detail. We initially tried different ap-
proximation schemes in which we constructed separate scene rep-
resentations for efficient in-memory tracing of the far-field, while
performing accurate ray tracing queries against the original geom-
etry in the near-field only. These schemes included creating both
uniform and non-uniform voxelizations of the scene which could
fit in main memory, represented using sparse octrees and k-d trees.
The resolution of the surrounding voxelization was used at each
baking point to size the near-field region so as to avoid any visible
artifacts with respect to the local baking resolution.

The resulting algorithm proved very efficient for small and medium
sized scenes, but failed completely to handle the most complex
cases. The extremely uneven geometric density, and the even less
uniform density of baking points, often spanning several orders of
magnitude, made it impossible to build a single voxelization useful
for the entire scene at once.

This led to our decision of adopting a multi-resolution scene rep-
resentation coupled with a local strategy for far-field and near-field
partitioning.

Numerical precision. Handling of complex scenes required spe-
cial attention to numerical precision. Some of the scenes in
Avatar were expressed in centimeters, with many submillimeter-
sized polygons located several hundred meters from the origin.

To avoid self-intersection artifacts while keeping relatively good
performance, we used a simple adaptive precision strategy: all
computations, from acceleration structure traversal to primitive in-
tersection, are initially performed using single-precision floating
points. However, if an intersection is found which is within 1 mil-
limeter from the ray origin, the intersection is recomputed at dou-
ble precision. In practice, double precision primitive intersection
is executed for less than 5% of the intersections. While this sim-
ple scheme still occasionally misses intersections, it substantially
reduces self-intersections, the biggest cause of visual artifacts.

6 Performance

For all performance measurements, we tested our system on a
server with dual-socket Intel Core i7-class quad-core CPUs with
16GB of main memory and 4 Tesla S1070 T10 GPUs, with 4GB of
memory per GPU.

The ray tracing algorithm described in Section 4.4 exhibits ex-
tremely high cache efficiency under most difficult scenarios, re-
ducing substantially the required amount of I/O. For example, on
a scene containing more than one billion micropolygons, baked
with a cache size of just 1GB, we could process each batch of
1024 points, corresponding to 1M ray queries, streaming on average
slightly less than 2MB of geometry from disk. This is equivalent to
less than 2 bytes of geometry per ray.
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Shot Occluder size Bake size BrickMap metrics Avg I/O Cache Tracing speed Trace Turnaround
/ grid / shaded build time and size efficiency time time

µpolys / size µpolys / rays min / bricks / GB byte / batch hit / query shaded rays/s
1 1016 M / 4.00 1016 M / 508.0 G 94.95 / 1864 k / 46.76 1.967 M 99.28 % 8.659 M 16 h 41 m 18 h 16 m
2 575 M / 4.00 575 M / 287.0 G 53.81 / 1040 k / 26.24 2.008 M 98.52 % 13.51 M 6 h 3 m 6 h 57 m
3 157 M / 3.59 12 M / 5.9 G 17.46 / 318 k / 7.42 8.296 M 96.16 % 11.38 M 0 h 9 m 0 h 26 m
4 125 M / 4.02 125 M / 62.5 G 16.99 / 237 k / 5.737 2.124 M 99.21 % 15.42 M 1 h 9 m 1 h 26 m
5 92 M / 3.39 92 M / 46.1 G 16.15 / 198 k / 4.496 0.5071 M 98.86 % 20.62 M 0 h 38 m 0 h 54 m
6 88 M / 3.91 88 M / 44.0 G 11.41 / 174 k / 4.146 1.299 M 99.12 % 22.18 M 0 h 34 m 0 h 45 m

Table 1: Measured SH occlusion baking statistics from six shots illustrated in Figures 9 and 10. Occluder size reports the number of
occluding micropolygons and their average distribution in grids as output by the tessellation pass. Bake size shows the number of query
micropolygons and the total number of shaded rays required during the bake. BrickMap metrics reports the time taken to build the
acceleration structure, the number of bricks in it and its size on disk. Average I/O reports the average per-batch transfer size between
host and device. Cache efficiency shows the percentage of queries that hit in cache. Tracing speed reports the number of shaded rays per
second; this includes the total cost of following a ray including its continuations due to non-opaque hits. Trace time is the time spent in
the ray tracing phase of the render while Turnaround time reports the sum of the BrickMap construction time and the trace time.

On complex scenes, a CPU implementation of the LOD-based ray
tracing kernel achieves roughly 700K rays per second per core on
the CPU. On the same scenes, the CUDA implementation achieves
15M rays per second per GPU. We also implemented a CUDA ker-
nel for performing the SH sample projection. The Tesla S1070 sys-
tem can execute this kernel at roughly 30× the speed of a quad-core
CPU.

Table 1 shows comprehensive statistics on a few representative
shots of varying complexity. All measurements were taken with
a cache size of just 1GB, to better show the effectiveness of our
caching strategy. In practice, we could raise the cache size up to
a maximum of 4GB, as this is the total amount of global memory
visible to each GPU. The number of samples per second reported
in this table refers to the number of shaded rays per second. In
this case, shading includes both recursive ray tracing due to semi-
transparent surfaces and SH sample projection.

Almost all of the scenes required only a few MBs of I/O per batch,
allowing the process to be executed at a speed close to the peak
speed of the tracing kernels. The only notable exception is scene
#3, which required an average I/O of about 8.3 MB per batch. This
is due to the fact that the density of the baking points in this scene
is roughly 1.5 orders of magnitude lower than that of the occluders’
geometry. As such, it represents a harder case for our system, which
is forced to load all the bricks overlapped by the bounding box of
the shading batch. Increasing the cache size to 4GB reduces the
problem noticeably.

7 Conclusions

We have presented a novel system for fast precomputation of spher-
ical harmonics-encoded directional occlusion, which allows rapid
cinematic lighting cycles at final movie quality. The precomputa-
tion is performed by a new ray tracing engine capable of efficiently
handling the scenes of unprecedented complexity encountered in
the making of the movie Avatar.

Construction of the system involved many interesting design trade-
offs and required novel algorithms for fast out-of-core acceleration
structure construction and LOD-based ray tracing for directional
occlusion and uniform spherical sampling queries. Both algorithms
have been developed on top of an efficient geometry streaming ar-
chitecture in order to maximize I/O efficiency. While this project
was particularly concerned with maximizing I/O performance to
match the raw ray tracing performance of modern architectures, the
broader themes of optimizing bandwidth and latency will be cru-
cial for the future of ray tracing in general. The current architec-
tural trends to increase compute power by increasing the number of

cores, and the filmmakers’ desire to always increase scene complex-
ity, will likely not be balanced by a corresponding increase in the
memory subsystem performance. Our system was designed with
these challenges in mind.

7.1 Future Work

While our acceleration structure construction is serial, for smaller
scenes it would be possible to build a parallel in-memory version
taking advantage of its deep bucketing passes, in a spirit similar to
the work of Wald et al. [2007].

We would also like to extend our general purpose LOD-less ray
tracer to take advantage of massively parallel GPU architectures by
employing a multi-pass approach where tracing is interleaved with
paging of missing bricks [Budge et al. 2009].

To further increase physical realism and overall flexibility by sup-
porting higher frequency effects, we plan to investigate the integra-
tion of our system with relighting methods [Hašan et al. 2006].
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(a) Shot 3: Final render. Our results correspond to computing SH occlusion
for the bake set shown on the right, while the rest of the jungle acted as oc-
cluders. See occluder vs. bake size in Table 1.

(b) Shot 3: SH render of the bake set using the vast occluder set of the entire
tree environment.

(c) Shot 4: Final render. Our results correspond to computing SH occlusion
for the environment without characters, creatures or waterfall.

(d) Shot 4: SH render of the portion of the set that was used in our test.
Characters and creatures were later traced as an occluder element for the final
frame.

(e) Shot 5: Final render. Our results correspond to computing SH occlusion
for the vegetation in presence of characters. Explosions were added later.

(f) Shot 5: Detail showing an SH render of the marked area.

(g) Shot 6: Final render. (h) Shot 6: SH render of the portion of the set that was used in our test.

Figure 10: Renders for Shots 3–6 with final renders on the left and Spherical Harmonics (SH) renders on the right.
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